首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
化学   92篇
力学   3篇
数学   1篇
物理学   14篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   1篇
  2012年   7篇
  2011年   5篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有110条查询结果,搜索用时 437 毫秒
61.
Nanofibrillated cellulose (NFC) is increasingly utilized in materials and biomedical applications consequently increasing interest in the modification of its surface properties. Besides modification using polyelectrolytes and polysaccharides, NFC can be combined with solid particles enabling formation of fibril network loaded with particles. Use of particles enabling easy functionalization could be beneficial for the development of hybrid structures, and lead to preparation of nanocomposites and functional materials. In order to explore interactions related to preparation of such structures, the interactions between nanosized precipitated calcium carbonate (nanoPCC) and nanoclay particles and NFC were examined by observing adsorption of the particles on NFC substrate using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) imaging. By a treatment with carboxymethylated cellulose (CMC), the anionicity of the NFC substrate could be increased, providing an additional tool to affect the interplay between NFC and the inorganic particles. For slightly cationic nanoPCC particles an increase in the anionicity of the NFC by the CMC treatment increased the affinity, while the opposite was true for anionic nanoclay. Additionally, for interactions between nanoclay and NFC, dispersion stability was an important factor. QCM-D was successfully used to examine the adsorption characteristics of nanoparticles although the technique is commonly used to study the adsorption of thin polymer layers. Distinct adsorption characteristics were observed depending on the nanoparticle used; nanoclay particles deposited as a thin layer, whereas nanoPCC particles formed clusters.  相似文献   
62.
Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface and an ESI emitter were developed to improve the speed and throughput of proteomics analyses. Validation of the microchip method was performed based on peptide mass fingerprinting and single peptide sequencing of selected protein standards. Rapid, yet reliable identification of four biologically important proteins (cytochrome C, β-lactoglobulin, ovalbumin and BSA) confirmed the applicability of the SU-8 microchips to ambitious proteomic applications and allowed their use in the analysis of human muscle cell lysates. The characteristic tryptic peptides were easily separated with plate numbers approaching 10(6), and with peak widths at half height as low as 0.6 s. The on-chip sheath flow interface was also exploited to the introduction of an internal mass calibrant along with the sheath liquid which enabled accurate mass measurements by high-resolution Q-TOF MS. Additionally, peptide structural characterization and protein identification based on MS/MS fragmentation data of a single tryptic peptide was obtained using an ion trap instrument. Protein sequence coverages exceeding 50% were routinely obtained without any pretreatment of the proteolytic samples and a typical total analysis time from sampling to detection was well below ten minutes. In conclusion, monolithically integrated, dead-volume-free, SU-8 microchips proved to be a promising platform for fast and reliable analysis of complex proteomic samples. Good analytical performance of the microchips was shown by performing both peptide mass fingerprinting of complex cell lysates and protein identification based on single peptide sequencing.  相似文献   
63.
64.
The kinetic resolution of 1-(3-pyridyl)buten-3-ylamine with activated and non-activated acyl donors and Burkholderia cepacia lipase (lipase PS-D) under dry conditions has been studied. The N-acylation in isopropyl acetate (E >100) and the acidic hydrolysis of the (R)-amide produced gave the corresponding enantiomerically enriched amines.  相似文献   
65.
We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05–6 μg mL−1) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20–160-fold) than with DAPPI (typically 2–15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC–MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.  相似文献   
66.
Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface, and an electrospray ionization (ESI) emitter were developed to improve the speed and throughput of metabolism research. Validation of the microchip method was performed using bufuralol 1-hydroxylation via CYP450 enzymes as the model reaction. The metabolite, 1-hydroxybufuralol, was easily separated from the substrate (R(s)=0.5) with very good detection sensitivity (LOD=9.3nM), linearity (range: 50-500nM, r(2)=0.9997), and repeatability (RSD(Area)=10.3%, RSD(Migrationtime)=2.5% at 80nM concentration without internal standard). The kinetic parameters of bufuralol 1-hydroxylation determined by the microchip capillary electrophoresis (CE)-ESI/mass spectrometry (MS) method, were comparable to the values presented in literature as well as to the values determined by in-house liquid chromatography (LC)-UV. In addition to enzyme kinetics, metabolic profiling was demonstrated using authentic urine samples from healthy volunteers after intake of either tramadol or paracetamol. As a result, six metabolites of tramadol and four metabolites of paracetamol, including both phase I oxidation products and phase II conjugation products, were detected and separated from each other within 30-35s. Before analysis, the urine samples were pre-treated with on-chip, on-line liquid-phase microextraction (LPME) and the results were compared to those obtained from urine samples pre-treated with conventional C18 solid-phase extraction (SPE, off-chip cartridges). On the basis of our results, the SU-8 CE-ESI/MS microchips incorporating on-chip sample pre-treatment, injection, separation, and ESI/MS detection were proven as efficient and versatile tools for drug metabolism research.  相似文献   
67.
The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the solvent systems had different polarities and gas-phase acidities and some of them positive electron affinities. The analytes that possessed gas-phase acidity formed deprotonated ions in proton transfer; in addition, fragments and solvent adducts were observed. The compounds of positive electron affinity formed negative molecular ions by electron capture or charge exchange and substitution products of form [M - X + O](-) by substitution reactions. The efficiency of deprotonation was decreased if the solvent used possessed higher gas-phase acidity than the analyte. Solvents of positive electron affinity captured thermal electrons and deteriorated the ionization of all the analytes. Also, the proportion of substitution products was affected by the solvent. Finally, the performances of negative ion APPI and negative ion APCI were compared. The sensitivity for the studied compounds was better in APPI, but the formation of substitution products was lower in APCI.  相似文献   
68.
Synthesis, purification and characterization of [4-ethoxycarbonyl-4′-carboxy-2,2′-bipyridine]bis(2,2′-bipyridine) ruthenium(II) hexafluorophosphate is described. This complex is shown to be electrochemiluminescent in aqueous solution during cathodic pulse polarization of thin insulating film-coated electrodes. Electrochemiluminescence (ECL) lifetime of the complex was observed to be ca. 40 μs at oxide-coated n-silicon electrodes; thus time-resolved detection is also possible. The ECL emission maximum of this carboxylate derivative is somewhat red-shifted when compared with an unmodified Ru(bpy)32+. Because the present complex can be easily covalently coupled with antibodies and oligonucleotides it is usable as an electrochemiluminescent label in various bioaffinity assays. The present chelates also produce strong chemiluminescence during dissolution of metallic magnesium in aqueous solution.  相似文献   
69.
Tiina Rasilainen 《Surface science》2009,603(14):2240-2109
Anisotropically microstructured and hierarchically micro/nanostructured surfaces were fabricated on polypropylene by injection moulding. Microstructured mould inserts were obtained by structuring electropolished aluminium foils with a micro-working robot, and hierarchically structured mould inserts by anodizing the microstructured aluminium foils. On both types of inserts, the microstructures were anisotropic, consisting of alternating smooth and microstructured zones. Anisotropy, and other properties of microstructures, can be controlled by adjusting the parameters of the micro-working robot. The mould inserts were used to prepare micro- and hierarchically structured polypropylene discs by injection moulding. Replication accuracy at both structure levels can be controlled through the moulding conditions. The behaviour of water on the structures was characterized by measuring the contact and sliding angles parallel and perpendicular to the microstructured zones. Surfaces with microstructures alone were highly hydrophobic, where water droplets adopted the Wenzel state and had clearly different parallel and perpendicular contact angles. Surfaces with dual structures had contact angles near 170° and sliding angles near 0°, and again the angles in parallel and perpendicular directions differed. Superhydrophobic, anisotropic Cassie-Baxter state was achieved.  相似文献   
70.
A novel, gas-tight API interface for gas chromatography–mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M?+?77]+ in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI. Graphical Abstract
?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号